DSE Courses of B.Sc. (Physical Sciences/Mathematical Sciences) Sem-VI

Category-III

DISCIPLINE SPECIFIC ELECTIVE COURSE – 4(i): ELEMENTARY MATHEMATICAL ANALYSIS

CREDIT DISTRIBUTION, ELIGIBILITY AND PRE-REQUISITES OF THE COURSE

	Credits	Credit	distribution		criteria	Pre-requisite of the course (if any)
Code		Lecture		Practical/ Practice		
Elementary Mathematical Analysis	4	3	1	0	Class XII pass with Mathematics	Elements of

Learning Objectives: The primary objective of this course is to introduce:

- Sequential criterion for limits and continuity of real-valued functions.
- Riemann integral of real-valued function *f* on [a, b] using Darboux sums.
- Pointwise and uniform convergence of sequences and series of functions.

Learning Outcomes: This course will enable the students to:

- Apply sequential continuity criterion for the proof of intermediate value theorem.
- Understand the basic tool used to calculate integrals
- Apply uniform convergence for term-by-term integration in power series expansion.

SYLLABUS OF DSE-4(i)

UNIT-I: Continuous Functions

Sequential criterion for limits and continuity of functions, Continuity on intervals, Intermediate value theorem and applications; Uniform continuity.

UNIT-II: The Riemann Integral

Riemann integration, criterion for integrability and examples; Integrability of continuous and monotone functions, Algebraic properties of the Riemann integral, Fundamental theorem of calculus (first form).

UNIT-III: Uniform Convergence

Sequences and series of functions: Pointwise and uniform convergence, Uniform Cauchy criterion, Weierstrass M-test, Implications of uniform convergence in calculus; Power series, Radius and interval of convergence, Applications of Abel's theorem for power series.

Essential Reading

1. Denlinger, Charles G. (2011). Elements of Real Analysis. Jones & Bartlett India Pvt. Ltd. Student Edition. Reprinted 2015.

(15 hours)

(18 hours)

(12 hours)

78

Suggestive Readings

- Bartle, Robert G., & Sherbert, Donald R. (2011). Introduction to Real Analysis (4th ed.). John Wiley & Sons. Wiley India Edition 2015.
- Ross, Kenneth A. (2013). Elementary Analysis: The Theory of Calculus (2nd ed.). Undergraduate Texts in Mathematics, Springer. Indian Reprint.

DISCIPLINE SPECIFIC ELECTIVE COURSE-4(ii): INTRODUCTION TO

CREDIT DISTRIBUTION, ELIGIBILITY AND PRE-REQUISITES OF THE COURSE

	Credits	Credit d	listribution		Pre-requisite	
Code		Lecture		Practical/ Practice		of the course (if any)
Introduction to Mathematical Modeling	4	3	0	1	Class XII pass with Mathematics	Differential

Learning Objectives: The main objective of this course is to introduce:

- Compartmental models and real-life case studies through differential equations, their applications and mathematical modeling.
- Choosing the most appropriate model from competing types that have been fitted.
- Fitting a selected model type or types to the data and making predictions from the collected data.

Learning Outcomes: The course will enable the students to:

- Learn basics of differential equations and compartmental models.
- Formulate differential equations for various mathematical models.
- Construct normal equation of best fit and predict the future values.

SYLLABUS OF DSE-4(ii)

UNIT-I: Compartmental Models

Compartmental diagram and balance law; Exponential decay, radioactive dating, and lake pollution models; Case study: Lake Burley Griffin; Drug assimilation into the blood; Case study: Dull, dizzy or dead; Exponential growth, Density-dependent growth, Equilibrium solutions and stability of logistic equation, Limited growth with harvesting.

UNIT-II: Interacting Population Models and Phase-plane Analysis (15 hours)

(15 hours)

SIR model for influenza, Predator-prey model, Ecosystem model of competing species, and model of a battle.

UNIT-III: Analytic methods of model fitting and Simulation (15 hours)

Fitting models to data graphically; Chebyshev approximation criterion, Least-square criterion: Straight line, parabolic, power curve; Transformed least-square fit, Choosing a best model. Monte Carlo simulation modeling: Simulating deterministic behavior (area under a curve, volume under a surface); Generating random numbers: middle-square method, linear congruence; Simulating probabilistic behavior.

Essential Readings

- 1. Barnes, Belinda & Fulford, Glenn R. (2015). Mathematical Modelling with Case Studies, Using Maple and MATLAB (3rd ed.). CRC Press, Taylor & Francis Group.
- 2. Giordano, Frank R., Fox, William P., & Horton, Steven B. (2014). A First Course in Mathematical Modeling (5th ed.). CENGAGE Learning India.

Suggestive Readings

- Albright, Brian, & Fox, William P. (2020). Mathematical Modeling with Excel (2nd ed.). CRC Press, Taylor & Francis Group.
- Edwards, C. Henry, Penney, David E., & Calvis, David T. (2015). Differential Equations and Boundary Value Problems: Computing and Modeling (5th ed.). Pearson.

Practical (30 hours)- Practical / Lab work to be performed in Computer Lab:

Modeling of the following problems using Mathematica/MATLAB/Maple/Maxima/Scilab etc.

- 1. Plotting the solution and describe the physical interpretation of the Mathematical Models mentioned below:
 - a. Exponential decay and growth model.
 - b. Lake pollution model (with constant/seasonal flow and pollution concentration).
 - c. Case of single cold pill and a course of cold pills.
 - d. Limited growth of population (with and without harvesting).
 - e. Predatory-prey model (basic volterra model, with density dependence, effect of DDT, two prey one predator).
 - f. Epidemic model of influenza (basic epidemic model, contagious for life, disease with carriers).
 - g. Ecosystem model of competing species
 - h. Battle model
- 2. Random number generation and then use it to simulate area under a curve and volume under a surface.
- 3. Write a computer program that finds the least-squares estimates of the coefficients in the following models.
 - a. $y = a x^2 + b x + c$
 - b. $y = a x^n$

- 4. Write a computer program that uses Equations (3.4) in [3] and the appropriate transformed data to estimate the parameters of the following models.
 - a. $y = b x^n$
 - b. $y = b e^{a x}$
 - c. $y = a \ln x + b$
 - d. $y = a x^2$
 - e. $y = a x^3$.

DISCIPLINE SPECIFIC ELECTIVE COURSE-4(iii): RESEARCH METHODOLOGY

CREDIT DISTRIBUTION, ELIGIBILITY AND PRE-REQUISITES OF THE COURSE

Course title & Code	Credits	Credit d	listribution		criteria	Pre-requisite of the course (if any)
		Lecture		Practical/ Practice		
Research Methodology	4	3	0	1	Class XII pass with Mathematics	NIL

Learning Objectives: The main objective of this course is to:

- Prepare the students with skills needed for successful research in mathematics.
- Develop a basic understanding of how to pursue research in mathematics.
- Prepare students for professions other than teaching, that requires independent mathematical research, critical analysis, and advanced mathematical knowledge.
- Introduce some open source softwares to carry out mathematical research.
- Impart the knowledge of journals, their rankings and the disadvantages of rankings.

Learning Outcomes: The course will enable the students to:

- Develop researchable questions and to make them inquisitive enough to search and verify new mathematical facts.
- Understand the methods in research and carry out independent study in areas of mathematics.
- Write a basic mathematical article and a research project.
- Gain knowledge about publication of research articles in good journals.
- Communicate mathematical ideas both in oral and written forms effectively.

SYLLABUS OF DSE - 4(iii)

UNIT– I: How to Learn, Write, and Research Mathematics (17 hours)

How to learn mathematics, How to write mathematics: Goals of mathematical writing, general principles of mathematical writing, avoiding errors, writing mathematical solutions and proofs, the revision process, What is mathematical research, finding a research topic, Literature survey, Research Criteria, Format of a research article (including examples of mathematical articles) and a research project (report), publishing research.

UNIT- II: Mathematical Typesetting and Presentation using LaTeX (16 hours)

How to present mathematics: Preparing a mathematical talk, Oral presentation, Use of technology which includes LaTeX, PSTricks and Beamer; Poster presentation.

UNIT- III: Mathematical Web Resources and Research Ethics (12 hours)

Web resources- MAA, AMS, SIAM, arXiv, ResearchGate; Journal metrics: Impact factor of journal as per JCR, MCQ, SNIP, SJR, Google Scholar metric; Challenges of journal metrics; Reviews/Databases: MathSciNet, zbMath, Web of Science, Scopus; Ethics with respect to science and research, Plagiarism check using software like URKUND/Ouriginal by Turnitin.

Essential Readings

- 1. Bindner, Donald, & Erickson Martin (2011). A Student's Guide to the Study, Practice, and Tools of Modern Mathematics. CRC Press, Taylor & Francis Group.
- 2. Committee on Publication Ethics- COPE (https://publicationethics.org/)
- 3. Declaration on Research Assessment. https://en.wikipedia.org/wiki/San_Francisco_Declaration_on_Research_Assessment
- Evaluating Journals using journal metrics; (https://academicguides.waldenu.edu/library/journalmetrics#s-lg-box-13497874)
- 5. Gallian, Joseph A. (2006). Advice on Giving a Good PowerPoint Presentation (https://www.d.umn.edu/~jgallian/goodPPtalk.pdf). MATH HORIZONS.
- 6. Lamport, Leslie (2008). LaTeX, a Document Preparation System, Pearson.
- 7. Locharoenrat, Kitsakorn (2017). Research Methodologies for Beginners, Pan Stanford Publishing Pte. Ltd., Singapore.
- 8. Nicholas J. Higham. Handbook for writing for the Mathematical Sciences, SIAM, 1998.
- 9. Steenrod, Norman E., Halmos, Paul R., Schiffer, M. M., & Dieudonné, Jean A. (1973). How to Write Mathematics, American Mathematical Society.
- 10. Tantau, Till, Wright, Joseph, & Miletić, Vedran (2023). The BEAMER class, Use Guide for Version 3.69. TeX User Group.

(https://tug.ctan.org/macros/latex/contrib/beamer/doc/beameruserguide.pdf)

11. University Grants Commission (Promotion of Academic Integrity and Prevention of Plagiarism in Higher Educational Institutions) Regulations 2018 (The Gazette of India: Extraordinary, Part-iii-Sec.4)

Practical (30 hours): Practical work to be performed in the computer lab of the following using any TeX distribution software:

1. Starting LaTeX, Preparing an input file, Sequences and paragraphs, Quotation marks, Dashes, Space after a period, Special symbols, Simple text- generating commands, Emphasizing text, Preventing line breaks, Footnotes, ignorable input.

- 2. The document, The document class, The title page, Sectioning, Displayed material, Quotations, Lists, Displayed formulas, Declarations.
- 3. Running LaTeX, Changing the type style, Accents, Symbols, Subscripts and superscripts, Fractions, Roots, Ellipsis.
- 4. Mathematical Symbols, Greek letters, Calligraphic letters, Log-like functions, Arrays, The array environment, Vertical alignment, Delimiters, Multiline formulas.
- 5. Putting one thing above another, Over and underlining, Accents, Stacking symbols, Spacing in math mode, Changing style in math mode, Type style, Math style.
- 6. Defining commands, Defining environments, Theorems.
- 7. Figure and tables, Marginal notes, The tabbing environment, The tabular environment.
- 8. The Table and contents, Cross-references, Bibliography and citation.
- 9. Beamer: Templates, Frames, Title page frame, Blocks, Simple overlays, Themes.
- 10. PSTricks
- 11. Demonstration of web resources.